Que vaut la limite d’une multiplication de fonctions ? lim f*g

__CONFIG_colors_palette__{"active_palette":0,"config":{"colors":{"55c7c":{"name":"Main Accent","parent":-1}},"gradients":[]},"palettes":[{"name":"Default Palette","value":{"colors":{"55c7c":{"val":"rgb(180, 28, 28)","hsl":{"h":0,"s":0.73,"l":0.41}}},"gradients":[]},"original":{"colors":{"55c7c":{"val":"rgb(19, 114, 211)","hsl":{"h":210,"s":0.83,"l":0.45}}},"gradients":[]}}]}__CONFIG_colors_palette__
Abonne-toi à la Chaine

partage si ça t'a aidé !

D'autres vidéos sur le même thème

Quelle limite permet de déterminer qu'une courbe admet une asymptote oblique ?
Quelle type de limite permet de dire qu'une courbe admet une asymptote horizontale ?
Quelle limite permet de déduire que la courbe d'une fonction admet une asymptote verticale ?
Que faut-il savoir sur les limites de la fonction logarithme népérien, ln(x)?
Que faut-il savoir sur les limites de la fonction exponentielle, e^x ?
Comment calculer la limite d'une fonction grâce à un encadrement ?

   Voir toute la playlist -> video-limites   

Retranscription

Dans cette vidéo, on va voir comment calculer la limite d’une multiplication de fonctions. Donc ce qui nous intéresse ici c’est la limite de f(x) * g(x). Donc ça à quoi c’est égal ?

Pas de suspense : la limite d’une multiplication de fonctions est…

La limite de f * g, c’est limite de f * limite de g. Peu importe vers quoi ça tend ! Évidemment si ici ça tend vers a, ce sera x tend vers a, x tend vers a, x tend vers a. Ce sera exactement la même limite évidemment.

Donc tu vois c’est assez logique, si une fonction f(a) qui vaut 2 par exemple, quand x tend vers a. De la même façon g tend vers 3 quand x tend vers a. Eh bien la limite de f * g, ça va naturellement tendre vers 2 * 3, il n’y a pas de suspense.

Idem avec plus l’infini. Si tu multiplies ici la limite qui vaut plus l’infini avec une limite qui vaut plus l’infini… tu fais multiplication de deux trucs très très grands, ça va rester très très grand !

C’est pareil pour +l’infini * -l’infini, donc là tu as quelque chose de positif fois quelque chose de négatif. Donc ça va être négatif ! Mais c’est quelque chose de très grand multiplié par quelque chose de très grand. Donc ça reste très grand, donc ça va tendre vers moins l’infini !

Les cas problématiques…

Par contre, il y a deux cas qui posent problème. Un cas si tu as une limite qui vaut zéro et que tu viens la multiplier par plus ou moins l’infini.

Donc ça, on ne sait pas ce que ça vaut, ça va dépendre des fonctions que tu regardes. Mais zéro fois plus ou moins l’infini c’est une forme indéterminée.

Avec les multiplications, c’est la seule puisque tu vois que si tu fais 0 fois un chiffre, eh bien ça va faire 0. Si tu fais a fois plus l’infini, eh bien ça dépend du signe de a… Mais en gros ça va être plus l’infini fois a, donc ça va rester l’infini. Et puis, si a est négatif, ça va devenir négatif. ça ne pose aucun problème dans tous les autres cas.

Demande-toi si…

Donc ce qu’il faut que tu te pose comme question c’est : est ce qu’il y a un problème ? En gros, à chaque fois que c’est l’infini, tu dis que c’est quelque chose de très très grand. Et quelque chose de très très grand, si c’est plus l’infini c’est positif, si c’est moins l’infini c’est négatif. Mais c’est toujours quelque chose de très très grand !

Donc tu vas multiplier quelque chose de très très grand par quelque chose d’autre. Soit aussi un infini, donc quelque chose de très très grand, dans ce cas là ça pose aucun problème. Soit une valeur a, une valeur, un réel, et dans ce cas là, eh bien ça dépend juste du signe de la multiplication.

Mais un réel fois plus l’infini, ça reste plus l’infini. Donc après, si ce réel est négatif, eh bien ça va être moins l’infini puisque tu multiplies par moins l’infini. Donc ça peut changer de signe quoi.

Tu dois faire attention aux signes, mais globalement, tu es entrain de multiplier quelque chose de fixe avec quelque chose qui est très très grande. Donc ça va rester très très grand, soit positif, soit négatif.

Le cas du 0.

Le seul moment où il va y avoir un problème c’est quand tu va multiplier 0 par plus ou moins l’infini ! Là ça va dépendre des fonctions, il va falloir travailler sur la fonction que t’es entrain de regarder de manière à pouvoir faire sauter l’indétermination. Et pouvoir dire finalement, ça va plus vite vers zéro que vers l’infini, donc c’est zéro. Ou ça va plus vite vers l’infini que 0, donc c’est plus infini.

Mais ça tu le verras ça dans les exercices. Donc la seule chose qu’il faut retenir ici c’est la limite d’une multiplication de fonctions c’est la multiplication des limites.

Et surtout, tu dois faire très attention puisqu’il y a plusieurs cas qui posent problème. En gros, si tu résumes tous ces cas c’est quand tu te retrouves avec une limite qui est zéro et l’autre qui est plus ou moins l’infini.

Clique ici pour voir plus de vidéos sur ce thème, et abonne-toi à la chaine Youtube.

{"email":"Email invalide.","url":"Site web invalide.","required":"Champs requis."}

★ OFFERT ★

Comment améliorer ses notes en Maths

Comment Booster tes Notes dès le prochain DS !

>