Comment calculer la longueur d’un vecteur 2D ?

0  commentAIREs

__CONFIG_colors_palette__{"active_palette":0,"config":{"colors":{"55c7c":{"name":"Main Accent","parent":-1}},"gradients":[]},"palettes":[{"name":"Default Palette","value":{"colors":{"55c7c":{"val":"rgb(180, 28, 28)","hsl":{"h":0,"s":0.73,"l":0.41}}},"gradients":[]},"original":{"colors":{"55c7c":{"val":"rgb(19, 114, 211)","hsl":{"h":210,"s":0.83,"l":0.45}}},"gradients":[]}}]}__CONFIG_colors_palette__
Abonne-toi à la Chaine

partage si ça t'a aidé !

D'autres vidéos sur le même thème

Comment utiliser la relation de Chasles dans un produit scalaire ?
Comment montrer que (O, u, v) est un repère du plan ?
Comment déterminer le projeté orthogonal pour calculer le produit scalaire en 2D ?
Quand et comment calculer un produit scalaire avec u•v=(1/2)*(||u||^2 + ||v||^2 - ||v-u||^2) ?
Quand et comment calculer un produit scalaire via la formule u•v = ||u||*||v||*cos(u,v) ?
Comment calculer les coordonnées d'un point sur un segment ? AM = kAB

   Voir toute la playlist -> video-2D   

Retranscription

Dans cette vidéo on va voir comment calculer la longueur d’un vecteur 2D. On est en 2D, on a un vecteur u qu’on va écrire (Ux Uy), question : quelle est la longueur de u ?

Longueur d’un vecteur en 2D : noter et calculer !

Notation pour un vecteur u

Alors la longueur de u première chose c’est que ça va se noter : deux barres comme ça, norme du u. La norme de u c’est la longueur de u.

Formule pour un vecteur u

Et donc la formule, elle est toute simple c’est √(Ux^2 + Uy^2). Et ici tu vas voir qu’il n’y a absolument rien de fou. Alors pourquoi c’est ça ?

Parce que si on fait un petit repère ici, on a un vecteur u, ok ? Ça c’est notre vecteur u, eh bien que représente Ux, c’est la composante en x, et Uy c’est la composante en y.

Et donc là normalement tu as vu ce que je voulais dire ! Ça c’est Uy et ça c’est Ux. On est dans un repère orthonormé, donc quand on prend la norme du vecteur, c’est simplement √(Ux^2 + Ux^2). Ça doit te faire penser directement à Pythagore !

Formule pour un vecteur AP

En fait c’est juste le théorème de Pythagore dans ce petit triangle qui te donne la longueur du vecteur. Alors attention, quand tu travailles cette fois-ci avec le vecteur par exemple AB, ses coordonnées sont (xB-xA yB-yA).

Donc quand tu fais la même, chose c’est à dire que quand tu calcules la longueur AB. Cette fois ci c’est une longueur, tu peux l’écrire comme ça. Mais tu peux aussi l’écrire AB en vecteur dans ce cas là c’est la norme.

Et c’est égal à √ ((xB-xA)^2+(yB-yA)^2). Et donc la seule raison de tout ça c’est ça. Donc tu vois qu’ici si je mets des lettres à la place de faire ce que j’avais fait, là j’ai A, là j’ai B. Ici j’ai xB, ici j’ai xA, quand on revient ici on a yA et ici on a yB.

Donc yB-yA c’est bien la longueur Uy, xB-xA c’est bien la longueur Ux ! Quand je fais Pythagore là dedans, eh bien j’obtiens exactement ça.

Voilà comment tu peux calculer la norme, autrement dit la longueur, d’un vecteur en 2D.

Clique ici pour voir plus de vidéos sur ce thème, et abonne-toi à la chaine Youtube.

{"email":"Email invalide.","url":"Site web invalide.","required":"Champs requis."}

  ★ offert ★  

Comment améliorer ses notes en Maths

Comment Booster tes Notes dès le prochain DS !

>