Comment montrer que deux vecteurs sont colinéaires en 3D ?

0  commentAIREs

__CONFIG_colors_palette__{"active_palette":0,"config":{"colors":{"55c7c":{"name":"Main Accent","parent":-1}},"gradients":[]},"palettes":[{"name":"Default Palette","value":{"colors":{"55c7c":{"val":"rgb(180, 28, 28)","hsl":{"h":0,"s":0.73,"l":0.41}}},"gradients":[]},"original":{"colors":{"55c7c":{"val":"rgb(19, 114, 211)","hsl":{"h":210,"s":0.83,"l":0.45}}},"gradients":[]}}]}__CONFIG_colors_palette__
Abonne-toi à la Chaine

partage si ça t'a aidé !

D'autres vidéos sur le même thème

Comment montrer que (O, u, v, w) est un repère de l'espace ?
Comment montrer que 2 droites sont parallèles en 3D ?
Comment montrer que 2 plans sont parallèles avec des droites ?
Comment montrer que 2 plans sont parallèles grâce aux vecteurs normaux ?
Comment calculer l’intersection entre une droite et un plan en 3D ?
Comment comprendre les équations cartésiennes de plans en 3D ?

   Voir toute la playlist -> video-3D    

Retranscription

​Dans cette vidéo, on va voir comment montrer que deux vecteurs sont colinéaires en 3D.

On a donc deux vecteurs, un premier vecteur U qui est (U_x U_y U_z). Et un vecteur V qui est (V_x V_y V_z), d’accord ? Et on veut montrer que U et V sont colinéaires.

Donc ça d’après ce qu’on a vu dans une vidéo précédente, ça veut dire que U et V en vecteurs ont la même direction ! Et ça, ça se traduit comment mathématiquement ?

Ça va se traduire par : il existe k appartenant aux réels privés de 0 tel que le vecteur U est égal à k fois le vecteur V. Évidemment ici ça pourrait être V est égal à k fois U. Parce que tu vois que si on écrit ça, il suffit de dire que V c’est (1/ k) * U.

Comment montrer que des vecteurs sont colinéaires en 3D ?

Maintenant dans les faits, dans les exercices, comment est-ce que tu l’utilises ? Dans les exos, tu vas calculer U_x/V_x, U_y/V_y et U_z/V_z. Tu calcules ces trois valeurs, ces trois ratios, ces trois divisions, ces trois fractions… Et si U_x / V_x = U_y / V_y = U_z / V_z = k, alors donc ça veut dire qu’en fait les trois fractions sont égales !

Et donc U et V seront colinéaires. En effet, si tu as ça, ça te dit quoi ? Ça te dit que U_x = k * V_x, U_y = k * V_y et U_z = k * V_z. Autrement dit, U en vecteur est égal à k * V en vecteur. Donc il y a bien une colinéarité !

La seule chose que tu as à retenir c’est que quand tu veux montrer que deux vecteurs de l’espace sont colinéaires, tu fais le ratio de chacune de leurs composantes V_x / U_x, V_y / U_y, V_z / U_z ou l’ inverse comme je l’ai écris ici, U_x/V_x, U_y/V_y, U_z/V_z. Et si ces trois ratios sont égaux alors les vecteurs sont colinéaires.

Clique ici pour voir plus de vidéos sur ce thème, et abonne-toi à la chaine Youtube.

Laisser un commentaire

Ton email ne sera pas publié.

{"email":"Email invalide.","url":"Site web invalide.","required":"Champs requis."}

  ★ offert ★  

Comment améliorer ses notes en Maths

Comment Booster tes Notes dès le prochain DS !